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We report the suppression of spatiotemporal chaos observed in a spatially extended chemical system. In one
spatial dimension, under appropriate parameter conditions the model system exhibits transition to turbulence
via backfiring of pulses. Suppression is achieved using different feedback and forcing techniques, some of
which are applicable in actual experimental situations. Results from the application of some of these strategies
to a single (uncoupled) oscillator (two-dimensional O.D.E (ordinary differential equations) system) are presented
to demonstrate similarities in the dynamical response of a single system and an extended system under the
influence of external feedbacks.

I. Introduction

Taming of turbulent dynamics exhibited by spatially extended
nonlinear systems is of much practical interest. The growing
interest in this field stems from the pioneering work done by
Ott et al.1 in controlling chaos. Since then chaos has been
controlled in various experimental systems2-7 using different
control strategies.8-10 These efforts have been naturally extended
to try to tame the complex dynamical behavior observed in
distributed dynamical systems.11-15 This control of spatiotem-
poral chaos leading up to the control of turbulence is an
extremely complicated problem due to the existence of numer-
ous unstable spatial modes but is immensly important too
because of its possible applications in plasma, laser devices,
and chemical and biological systems where both spatial and
temporal dependences need to be considered. In this article we
propose using feedbacks and forcing to suppress the turbulent
behavior observed in a model (one spatial dimension) used for
description of CO oxidation on a Pt(110) single crystal surface
under UHV conditions.16,17 This model is briefly described in
the following section. In section III two different control
strategies are implemented to stabilize the fixed point of the
single two-dimensional oscillator. Results from implementation
of different feedback and forcing techniques to an extended
system composed of diffusively coupled oscillators (section II)
are presented in section IV. A brief summary of results is
presented in section V.

II. Numerical Model for CO Oxidation

To demonstrate suppression of spatiotemporal chaos, we
choose the following model used for the description of CO
oxidation on a Pt(110) single crystal surface under UHV
conditions16,17

where the activator variableu corresponds to the coverage of

the adsorbed CO, while the inhibitor variableV describes a
structural change. The functionf(u) is of the form

Under appropriate parameter values in one spatial dimension,
the model systems exhibits traveling pulse behavior, amplitude
turbulence, and phase turbulence. The system size was chosen
to be 100 (dimensionless units) and was divided into 200 grid
elements for simulation of the model using explicit integration
algorithm with constant time and space steps (100/200) subjected
to periodic boundary conditions.

III. Suppressing Oscillations in a Single Element Using
Feedbacks

In this section we apply two feedback techniques to the limit
cycle (period-1) dynamics exhibited by O.D.E. version of the
P.D.E. (partial differential equations) model (eqs 1, 2). The two
dimensional O.D.E. model was integrated using a fourth order
Runge-Kutta algorithm with a fixed stepsize (h ) 0.1). Using
the feedback control we were able to stabilize the fixed point
steady state of the model system.

A. Feedback: γ(u(t) - u(t - τ)). Under the influence of
the above mentioned control, the altered dynamics of the single
oscillator are represented by

The functionf(u) is of the form

Figure 1 shows the dynamical evolution of the system. Prior to
iteration number 5000 the system exhibits period-1 oscillation
and subsequently converges to the stabilized fixed point under

∂tu ) -
u(u - 1)

ε (u - V + b
a ) + D∇2u (1)

∂tV ) f(u) - V (2)

u < 1/3 f f(u) ) 0; 1/3e u e 1 f f(u) )
1 - 6.75u(u - 1)2; u > 1 f f(u) ) 1

ŭ ) -
u(u - 1)

ε (u - V + b
a ) + γ(u(t) - u(t - τ)) (3)

V̆ ) f(u) - V (4)

u < 1/3 f f(u) ) 0; 1/3e u e 1 f f(u) )
1 - 6.75u(u - 1)2; u > 1 f f(u) ) 1
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the influence of the control of the type as shown in eq 3.
Therefore, under the influence of the superimposed feedback
the previously unstable focus is converted to a stable focus
(indicated by the dampening of the period-1 oscillation). Local
stability analyses of eq 3 indicate that the eigenvalues of the
fixed point are a function of the control constant (γ) and that
the real part of the eigenvalue actually switches sign (positive
f negative) for a certain minimum value ofγ ) 0.385. Upon
successful stabilization of the steady state, the control signal
goes to zero as (u(t) ) u(t - τ)). However, for lower values of
γ < 0.38 we were able to target on a whole array of period-1
dynamics of different amplitudes. Figure 2a shows confinement
of final dynamics on one such limit cycle beyond iteration
number 5000. The nonvanishing control signal is plotted in
Figure 2b. This is analogous to altering dynamics via a
nonvanishing feedback.

B. Feedback: γ(u - uf). For the implementation of the
feedback of the type mentioned above, one requires the location
of the unstable fixed point (target state;uf). The controlled
dynamics under the influence of the feedback can be written as

The functionf(u) is of the form

Figure 3 represents the dynamical evolution of the system
without control (iteration < 5000) and with the control
implemented (iteration> 5000). The control signal upon
successful stabilization goes to zero as the dynamics converge
on to the target fixed point state (uf). Similar to the results
discussed in the previous subsection, by decreasingγ targeting
of an entire array of limit cycles (different amplitudes) was
achieved with a nonvanishing control signal.

IV. Suppression of Chemical Turbulence in the Extended
System

In this section we consider the extended system with periodic
boundary conditions studied extensively by Ba¨r et. al.16,17 and

discussed briefly in section II. The diffusively coupled system
exhibits turbulent dynamics for the following parameter values
(a ) 0.84, ε ) 0.12, b ) -0.045, andD ) 1/5.2.) The
implemented control strategies are presented in different subsec-

Figure 1. Dynamical evolution of the single oscillator without (<5000)
control and under the influence of control (>5000) of the type as
discussed in section III A. The system parameters area ) 0.84,ε )
0.12,b ) -0.045 and the control parameters areγ ) -0.4 andτ )
10.

ŭ ) -
u(u - 1)

ε (u - V + b
a ) + γ(u - uf) (5)

V̆ ) f(u) - V (6)

u < 1/3 f f(u) ) 0; 1/3e u e 1 f f(u) )
1 - 6.75u(u - 1)2; u > 1 f f(u) ) 1

Figure 2. Successful targeting of a period-1 orbit (different amplitude
and frequency) under the influence of the control of the type in section
III A. The system parameters area ) 0.84,ε ) 0.12,b ) -0.045 and
the control parameters areγ ) -0.2 andτ ) 10. (a) Shows the
dynamical evolution of the system. Control is implemented subsequent
to iteration number 5000. (b) Shows the corresponding nonvanishing
control signal of the same time period.

Figure 3. Dynamical evolution of the single oscillator without (<5000)
control and under the influence of control (>5000) of the type as
discussed in section III B. The system parameters area ) 0.84,ε )
0.12,b ) -0.045 and the control parameter isγ ) -0.7.
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tions depending on whether or not the local state of the system
is required for their successful implementation. All of the
discussed feedback and forcing strategies are able to suppress
the turbulent dynamics via stabilization of fixed point state and/
or by stabilizing periodic (spatially homogeneous and temporally
periodic) solutions. The robustness of all the results presented
in this section were checked by adding a small yet finite amount
of random fluctuations.

A. Local Feedback Techniques.All of the feedbacks
considered in this subsection require information of the local
state for successful suppression of the turbulent dynamics.
Although the feedback is implemented locally, the feedback
superimposed to the evolution equation is the difference between
the local state and a global observable (local/global composite).

1. Feedback: γ(ui(t) - 1/N∑i)1
N ui(t - τ)). The altered

dynamics under the influence of the above feedback control
are represented by

The functional form off(u) remains the same as used earlier.
Using the control of the type in eq 7 we were able to stabilize

both the homogeneous and/or the temporally periodic state
depending on the value ofγ andτ. Figure 4a shows the space-
time plot where the control is initiated at the 5000th iteration
and the dynamics stabilize on the homogeneous state. Figure
4b shows the space-amplitude plot for the controlled system.
It clearly exhibits the stabilization of the target fixed point
(homogeneous) state (ui ) uf ) 0.7432). Also, the control signal
vanishes upon successful stabilization. Figure 5a shows the
space-time plot for the control at a lower value ofγ. In this
case the control stabilizes a temporally periodic state. The local
time series of the 100th cell (Figure 5b) shows a period-1
oscillation (smaller amplitude) subsequent to the application of
the control (similar to Figure 2a). Also, (similar to Figure 2b)
the superimposed feedback signal is nonvanishing.

2. Feedback:γ(ui - uF). The controlled dynamics under the
influence of this feedback are represented by

The control of eq 9 was also able to stabilize the homogeneous
state (Figure 6). Moreover, similar to the space-time plot of
Figure 5a, suppression of turbulent dynamics was also achieved
via stabilization of a spatially homogeneous and temporally
periodic state with a nonvanishing control signal.

B. Global Feedback Techniques.The obvious advantage
of using global feedback techniques is the enhanced relevance

Figure 4. Control of the turbulent behavior via stabilization of the
homogeneous state for 200 diffusively coupled oscillators (section II)
using the control as discussed in section IV A.1. The system parameters
area ) 0.84, ε ) 0.12,b ) -0.045 andD ) 1/5.2 and the control
parameter areγ ) -0.4 andτ ) 10. (a) Space-time portrait prior and
subsequent to (indicated by “ON”) implementation of the control signal.
Every 20th step is plotted along the time axis. (b) Depicts the space
amplitude profile of the controlled dynamics. It clearly indicates that
the target homogeneous state is the previously unstable fixed point
solution of the single oscillator.

∂tu ) -
-1u(u - 1)

ε (u -
V + b

a ) + D∇2u +

γ(ui(t) -
1

N
∑
i)1

N

ui(t - τ)) (7)

∂tV ) f(u) - V (8)

Figure 5. Suppression of chemical turbulence via stabilization of the
periodic (spatially homogeneous yet temporally periodic) solution for
200 diffusively coupled oscillators (section II) using the control as
discussed in section IV A.1. The system parameters area ) 0.84,ε )
0.12,b ) -0.045 andD ) 1/5.2 and the control parameters areγ )
-0.1 andτ ) 4. (a) Space-time portrait before and subsequent to
(indicated by “ON”) implementation of the control signal. Every 20th
step is plotted along the time axis. (b) The local time series of the
100th cell prior and subsequent to the implementation of the control.
The effect of the control is analogous to that observed in Figure 2a.

∂tu ) -
-1u(u - 1)

ε (u - V + b
a ) + D∇2u + γ(ui - uF) (9)

∂tV ) f(u) - V (10)
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to experimental situations. The feedbacks considered in this
section involve superimposing a global observable or a differ-
ence of two global observables to the dynamical equation.

1. Feedback: γ(1/N∑i)1
N ui(t) - 1/N∑i)1

N ui(t - τ)). This
control involves computing the difference of global averages
at two different times and feeding it back into the system. The
system under the influence of the control is represented by

A control of this type is plausible in an actual experimental
system as the superimposed feedback can be acquired online
from the experiments. Using this control we were able to
stabilize spatially homogeneous states which are periodic in
time. Figure 7a shows the space-time plot for one such control
exhibiting stabilization on a temporally periodic state. The
space-amplitude plot (Figure 7b) illustrates the point that the
final state is spatially homogeneous and temporally periodic.

2. Feedback:γ1/N∑i)1
N ui(t - τ)). Global delayed feedback

has been used to control turbulence in the complex Ginzburg-
Landau equation.14 In this subsection we implement a global
feedback with delay to the model system exhibiting chemical
turbulence. The dynamics under the influence of the control
are represented by

Figure 8 shows the results of implementation of the global
feedback control. Control is attained on a homogeneous state;
however, the control signal remains a nonvanishing entity. By
varying the value ofγ we were able to stabilize a wide array of
nonturbulent oscillatory states. It should be possible to apply
this global feedback control to actual systems.

C. Forcing: γ * sin(wt). In this case one of the sites (#1) of
the diffusively coupled oscillators is perturbed with a periodic
forcing of the form above. Under the influence of forcing, the
altered dynamics of one of the oscillators (i)1) (the evolution

equations for the remaining oscillators is unchanged) is repre-
sented by

Figure 9 shows the space-time plot for the extended system
under the effect of local forcing. For the appropriate choice of
w and γ it clearly exhibits the induction of order and its
subsequent propagation up until complete suppression of

Figure 6. Space-time portrait for the coupled oscillator system with
the implementation of the feedback control (indicated by “ON”) as
discussed in section IV A.2. The system parameters area ) 0.84,ε )
0.12, b ) -0.045 andD ) 1/5.2 and the control parameter isγ )
-0.93. Every 20th step is plotted along the time axis.
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∂tV ) f(u) - V (14)

Figure 7. Control of the turbulent behavior via stabilization of the
temporally periodic state for 200 diffusively coupled oscillators (section
II) using the control as discussed in section IV B.1. The system
parameters area ) 0.84,ε ) 0.12,b ) -0.045 andD ) 1/5.2 and the
control parameters areγ ) -0.9 andτ ) 10. (a) Space time portrait
prior and subsequent to (indicated by “ON”) implementation of the
control signal. Every 20th step is plotted along the time axis. (b) The
space-amplitude profile of the controlled dynamics. It illustrates the
point that the target state is spatially homogeneous and temporally
periodic.

Figure 8. Space-time portrait for the coupled oscillator system with
the implementation of the global feedback control (indicated by “ON”)
as discussed in section IV B.2. The control results in stabilization of
the homogeneous state with a nonvanishing control signal. The system
parameters area ) 0.84,ε ) 0.12,b ) -0.045 andD ) 1/5.2 and the
control parameters areγ ) 0.005 andτ ) 8. Every 20th step is plotted
along the time axis.

∂tu ) -
-1u(u - 1)

ε (u - V + b
a ) +

D∇2u - γ * sin(wt) (15)

∂tV ) f(u) - V (16)
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turbulent dynamics is achieved. The stabilized state is a stable
traveling pulse train propagating in one spatial dimension. This
control via local periodic perturbations is applicable in experi-
mental situations and is successful as long as the external forcing
is “ON”.

V. Conclusions

In this article we have demonstrated successful suppression
of turbulent behavior observed in a numerical model for a
spatially extended reaction-diffusion system. The stabilized
system corresponded to the homogeneous state and/or tempo-
rally periodic state depending on the type of feedback used and/
or the value ofγ chosen. The feedback control described in
section IV (section IV A.1- IV A.2) requires information about
the local state of the system for successful implementation;
however, it does not necessary imply that they are not applicable
to experiments. The controlling feedback in both of these
strategies is proportional to the difference between the local
state and a global variable. Therefore, the correctional feedback
superimposed onto a site is related to the local dynamics at that
site. It is possible to envisage a setup where the response on

different sites of an extended system is a function of the local
state of individual sites. The following two global control
strategies (IV B.1, B.2) rely on feedbacks involving global
observables and in general are more relevant to experimental
situations. Finally, results for external (periodic) forcing indicate
that generation of global order is achieved even though the
perturbations are applied locally to a single site. The final
dynamics in this case is a propagating pulse train traversing
the system.

Acknowledgment. The authors acknowledge Gerold Baier
for suggesting the technique of section IVC. One of us (P.P.)
acknowledges financial support from CONACyT under Project
Ref # 26076-E.

References and Notes

(1) Ott, E.; Grebogi, C.; Yorke, J. A.Phys. ReV. Lett.1990, 64, 1196.
(2) Ditto, W. L.; Rauseo, S. N.; Spano, M. L.Phys. ReV. Lett. 1990,

65, 3211.
(3) Hunt, E. R.Phys. ReV. Lett. 1991, 67, 1953.
(4) Roy, R.; Murphy, T., Jr.; Maier, T. D.; Gills, Z.; Hunt, E. R.Phys.

ReV. Lett. 1992, 68, 1259.
(5) Garfinkel, A.; Spano, M. L.; Ditto, W. L.; Weiss, J. N.Science

1992, 257, 1230.
(6) Petrov, V.; Ga´spár, V.; Masere, J.; Showalter, K.Nature1993, 361,

240.
(7) Parmananda, P.; Sherard, P.; Rollins, R. W.; Dewald, H. D.Phys.

ReV. E. 1993, 47, R3003.
(8) Peng, B.; Petrov, V.; Showalter, K.J. Phys. Chem.1991, 95, 4957.
(9) Peng, B.; Petrov, V.; Showalter, K.Physica1992, A188, 210.

(10) Rollins, R. W.; Parmananda, P.; Sherard, P.Phys. ReV. E. 1993,
47, R780.

(11) Gang, H.; Zhilin, Q.Phys. ReV. Lett. 1994, 72, 68.
(12) Auerbach, D.Phys. ReV. Lett. 1994, 72, 1184.
(13) Aranson, I.; Levine, H.; Tsimring, L.Phys. ReV. Lett. 1994, 72,

2561.
(14) Battogtokh, D.; Mikhailov, A.Physica D1996, 90, 84.
(15) Parmananda, P.; Hildebrand, M.; Eiswirth, M.Phys. ReV. E. 1997,

56, 239.
(16) Bär, M.; Gottschalk, N.; Eiswirth, M.; Ertl, G.J. Chem. Phys.1994,

100, 1202.
(17) Bär, M.; Eiswirth, M. Phys. ReV. E. 1993, 48, R1635.

Figure 9. Space time portrait for the coupled oscillator system with
the implementation of forcing to a single site (site #1; indicated by
“ON”) as discussed in section IV C. These local periodic perturbations
propagate to the neighboring cells, resulting in the emergence of global
order. The system parameters area ) 0.84,ε ) 0.12,b ) -0.045 and
D ) 1/5.2 and the control parameters areγ ) -0.5 andw ) 0.05.
Every 20th step is plotted along the time axis.
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